如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.