证明:n=2时,有1/3+1/4+1/5+1/6=0.95>5/6假设n=k时,有1/(k+1)+1/(k+2)+.+1/3k>5/6成立则当n=k+1时,左边=1/(k+2)+1/(k+3)+.+1/3(k+1)=1/(k+2)+1/(k+3)+.+1/3k+1/(3k+1)+1/(3k+2)+1/3(k+1)下面比较n=k+1比n=k时,表达式...
有1/3+1/4+1/5+1/6=0.95>5/6点解要+1/5+1/6?
左边是从1/(n+1)一直加到1/3n啊中间的项都用省略号代替了n=2时就是从1/3加到1/3n=1/6,所以有1/5+1/6