证明:(1)当n=1时,左边=1/1*4=1/4=1(3*1+1)命题成立.
(2)假设n=k(k≥1)时,命题成立.
即1/1*4+1/4*7+.1/(3k-2)(3k+1)=k/(3k+1);
n=k+1时,
则1/1*4+1/4*7+.+1/(3k-2)(3k+1)+1)+1/(3k+1)(3k+4)
=k/(3k+1)+1/(3k+1)(3k+4)
=(3k²+4k+1)/(3k+1)(3k+4)
=(3k+1)(k+1)/(3k+1)(3k+4)
=(k+1)/(3k+4)
=(k+1)/[3(k+1)+1]
所以,对于n属於N+命题(1/1*4)+(1/4*7)+(1/7*10)+.+1/(3n-2)(3n+1)=n/3n+1成立.
这一步:则1/1*4+1/4*7+....+1/(3k-2)(3k+1)+1)+1/(3k+1)(3k+4)1/(3k-2)(3k+1)+1)←在个+1是不是打多了?
对不起,是的。是这样才对:1/1*4+1/4*7+....+1/(3k-2)(3k+1)+1/(3k+1)(3k+4)