①当n=1时,左边=1=右边显然成立.
②假设当n=k时等式成立,则当n=k+1时,有
左边=1*n+2*(n-1)+3*(n-2)+……+(n-1)*2+n*1
=1*(k+1)+2*k+3*(k-1)+……+k*2+(k+1)*1
=1*k+1+2*(k-1)+2+3*(k-2)+3+……+k*1+k+k+1
=1*k+2*(k-1)+3*(k-2)+……+(k-1)*2+k*1+1+2+3+……+k+(k+1)
=[k(k+1)(k+2)]/6+(k+1)(k+2)/2注意:这一步左边一半用的是归纳假设,右一半是等差数列
=[(k+1)(k+2)(k+3)]/6
=[n(n+1)(n+2)]/6
=右边成立
则由数学归纳法知,对于任意正整数n,该式成立.