∵a,b,c为三个不等正实数
∴令a>b>c>0
令A=a^(2a)*b^(2b)*c(2c)/a^(b+c)*b^(a+c)*c^(a+b).
A=[a^(2a-b-c)]*[b^(2b-c-a)]*[c^(2c-a-b)]
A=[a^(a-b+a-c)]*[b^(b-a+b-c)]*[c^(c-a+c-b)]
A=[(a/b)^(a-b)]*[(a/c)^(a-c)]*[(b/c)^(b-c)]
∵a/b>1,a-b>0,
∴(a/b)^(a-b)]>1.
同理:
(a/c)^(a-c)>1
(b/c)^(b-c)>1.
∴A>1.
∴a^(2a)*b^(2b)*c(2c)>a^(b+c)*b^(a+c)*c^(a+b).