高一函数数列综合问题(急~)求证:1+f(1/5)+f(1/11)+...+f(1/(n^2+3n+1))=-f(1/(n+2))
已知函数f(x)在(-1,1)上有定义,f(1/2)=-1,满足:x,y∈(-1,1)时,有f(x)+f(y)=f((x+y)/(1+xy)).
(1)证明在(-1,1)上恒有f(-x)=-f(x);
(2)数列{an}满足a1=1/2,a(n+1)=2an/(1+an^2),设xn=f(an),求{xn}的通项;
(3)求证:1+f(1/5)+f(1/11)+...+f(1/(n^2+3n+1))=-f(1/(n+2))
第(1)(2)的答案已经做出来了,这里只要第(3)问的详解,急
注:{xn}的通项已经算出,为-2^(n-1)