当前位置 :
二次函数f(X)=3ax^2+2bx+c,若a+b+c=0,f(0)*f(1)>0求证方程f(X)=o有实根
1人问答
问题描述:

二次函数f(X)=3ax^2+2bx+c,若a+b+c=0,f(0)*f(1)>0求证方程f(X)=o有实根

郝刚回答:
  a+b+c=0,所以b=-a-c,所以f(0)*f(1)=c(2b+3a+c)=c(-2a-2c+3a+c)=c(a-c)>0,所以cc-cc,f(X)=o的判别式=4bb-12ac=4[(a+c)(a+c)-3ac]>4[(a+c)(a+c)+3cc]>=0(当且仅当a+c=0,c+0,同时成立,才取等号,此时,a=c=b=0,不符合题意...
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞