勾股定理题
根据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,如果勾是3,股是4,那么弦为5,后人概括为“勾3,股4,弦5“
(1)观察3,4,5,;5,12,13;7,24,25;……发现这些勾股数的第一个数都是奇数,且从3起就没有间断过,计算1/2(9-1),1/2(9+1)与1/2(25-1),1/2(25+1),并根据你发现的规律,分别写出能表示7,24,25的股与弦的算式;
(2)根据(1)的规律,用n(n为奇数,且n≤3)的代数式,表示这些勾股数的勾、股、弦,合理猜想他们之间两种相等关系,并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;……可以发现各组的第一个数都是偶数,且从4起没有间断过,运用类似上述探索的方法,直接用m(m为偶数,且m≥4)的代数式表示它们的股和弦.
(要求:有理有据,三道题必须都回答完整.做到的即选为最佳答案,并再次加至少5分)