当前位置 :
怎么判断函数极限是否存在
5人问答
问题描述:

怎么判断函数极限是否存在

鲍劲松回答:
  没有说什么准则了,你可以求它的极限啊,如果是无穷那就是不存在了.它再复杂也要运用一些方法(罗比达法则,等价无穷小,泰乐公式,等)进行化简,求出极限.
崔进平回答:
  罗比达法则和泰乐公式是什么
鲍劲松回答:
  罗比达是洛必达法则,是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。具体内容设(1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时limf'(x)/F'(x)存在(或为无穷大),那么x→a时limf(x)/F(x)=limf'(x)/F'(x)。再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时limf'(x)/F'(x)存在(或为无穷大),那么x→∞时limf(x)/F(x)=limf'(x)/F'(x)。利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。
鲍劲松回答:
  我只说自己的理解;你知道:(?)f(x)=f(x0)+f(x0)'(x-x0)+0(x-x0)在点x0用f(x0)+f('x0)(x-x0)逼近函数f(x)但是近似程度不够就是要用更高次去逼近函数当然还要满足误差是高阶无穷小所以对比上面的式子就有:pn(x)=a0+a1(x-x0)+a2(x-x0)^2+...+an(x-x0)^n这里an=pn^(n)(x0)/n!形式跟上面是一样的最后证明高阶无穷小!不知道这样怎么样呢??
鲍劲松回答:
  望采纳谢谢
数学推荐
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞