当前位置 :
【用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)】
1人问答
问题描述:

用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)

刘冠军回答:
  n=1时,左边=1*1=1右边=1/6*1*2*3=1左边=右边,等式成立!假设n=k时成立(k>1)即:1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2)当n=k+1时;左边=1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1=1*k+1*1+2(k-1)+...
数学推荐
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞