I=∫<0,2π>[1+cost-(cost)^2-(cost)^3]dt
=∫<0,2π>[1-(cost)^2](1+cost)dt
=∫<0,2π>(sint)^2(1+cost)dt
=∫<0,2π>(sint)^2dt+∫<0,2π>(sint)^2dsint
=∫<0,2π>(sint)^2dt+0
=∫<0,π/2>(sint)^2dt+∫<π/2,π>(sint)^2dt
+∫<π,3π/2>(sint)^2dt+∫<3π/2,2π>(sint)^2dt
后3项分别令x=t-π/2,y=t-π,z=t-3π/2,得
I=∫<0,π/2>(sint)^2dt+∫<0,π/2>(cosx)^2dx
+∫<0,π/2>(-siny)^2dy+∫<0,π/2>(-cosz)^2dz
=2∫<0,π/2>(sint)^2dt+2∫<0,π/2>(cosx)^2dx
后项再设x=π/2-t,则
I=2∫<0,π/2>(sint)^2dt+2∫<π/2,0>(sint)^2(-dt)
=4∫<0,π/2>(sint)^2dt