积分区域D关于x轴对称,
原式=2∫∫[D1](x^2-y^2)^(1/2)dxdy,D1为y=x,x=1,y=0围成的区域
=2∫[0->1]∫[0->x](x^2-y^2)^(1/2)dydx
换元y=xcost,t∈[-π/2,0]
=2∫[0->1]∫[-π/2->0]-xsint(x^2-y^2)^(1/2)dtdx
=2∫[0->1]∫[-π/2->0](xsint)^2dtdx
=2∫[0->1]∫[-π/2->0](xsint)^2dtdx
=2∫[0->1](πx^2)/4dx
=2*π/12=π/6