如题
用数学归纳法证明:1/n+1/(1+n)+1/(n+2)+.1/n^2>1(n∈N且n>1)
所以当n=k+1时,有:
1/n+1/(n+1)+...+1/k^2+1/(k^2+1)+1/(k^2+2)+...+1/(k^2+2k+1)
>1+1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)
这步错了应当从1/(n+1)开始加应当>1+1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)-1/n
即证明1/(k^2+1)+1/(k^2+2)+1/(k^2+2k+1)-1/n>0