当前位置 :
已知四个实数a,b,c,d,且a≠b,c≠d,若a²+ac=2,b²+bc=2,c²+ac=4,d²+ad=4,同时成立,求6a+2b+3c+2d的值.
1人问答
问题描述:

已知四个实数a,b,c,d,且a≠b,c≠d,若a²+ac=2,b²+bc=2,c²+ac=4,d²+ad=4,同时成立,求6a+2b+3c+2d的值.

康通博回答:
  分析:由条件可以看出,需要把a、b看作方程x²+cx=2的两个根,c、d看作是y²+ay=4的两个根,利用韦达定理来解决.   因为a²+ac=2,c²+ac=4,   即a(a+c)=2,c(a+c)=4,   所以c=2a,   可以求出a=根号6/3,c=2倍根号6/3,   把c=2倍根号6/3带入b²+bc=2,   可得b=根号6,   把a=根号6/3代入d²+ad=4,   可得d=-根号6,   这样可以求得6a+2b+3c+2d=0.
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞