为什么抛物线方程与圆方程联立不能使用韦达定理
今天同学来问我一道数学题目,偶然发现了一个很奇怪的现象.那就是抛物线方程与圆方程联立不能使用韦达定理.
题目是求:
抛物线x^2=4与圆x^2+y^2=1的交点.
常规解法
将两方程联立,可得:y^2+4y-1=0
可是这个方程的韦达定理是
y1+y2=-4
y1×y2=-1
可是通过画图,可以很容易了解到,抛物线和圆的交点均在X轴上方.那么也就是说,这个韦达定理不成立.
我百思不得其解,全年级也没有老师能回答我这个问题.
虽然这个题目很容易解出正确答案,但是题目中反映的现象不得不令人陷入深思.请有数学强于我的人给我一个满意的答复.