(1);(2)点距点6km.
试题分析:(1)由图可知,因此为了求,可通过求和,,下面关键要求,为止作,垂足为,这时会发现随的取值不同,点可能在线段上,也可能在线段外,可能为锐角也可能为钝角,这里出现了分类讨论,作交延长线于,由已知可求出,这就是分类的分界点;(2)由(1)求得,要求它的最大值,可以采取两种方法,一种是由于分子是一次,分母是二次的,可把分子作为整体,分子分母同时除以(当然分母也已经化为的多项式了),再用基本不等式求解,也可用导数知识求得最大值.
(1)过A分别作直线CD,BC的垂线,垂足分别为E,F.
由题知,AB=4.5,BC=4,∠ABF=90o-60o=30o,
所以CE=AF=4.5×sin30o=,BF=4.5×cos30o=,
AE=CF=BC+BF=.
因为CD=x(x>0),所以tan∠BDC==.
当x>时,ED=x-,tan∠ADC===(如图1);
当0<x<时,ED=-x,tan∠ADC=-=(如图2). 4分
所以tanq=tan∠ADB=tan(∠ADC-∠BDC)=
==,其中x>0且x≠.
当x=时tanq=