∫x·arccos(x)dx
=∫arccos(x)d(x²/2)
=(1/2)x²·arccos(x)-(1/2)∫x²d(arccos(x))
=(1/2)x²·arccos(x)-(1/2)∫x²·-1/√(1-x²)dx
=(1/2)x²·arccos(x)+(1/2)∫x²/√(1-x²)dx,x=sinθ=>dx=cosθdθ,cosθ=√(1-x²)
=(1/2)x²·arccos(x)+(1/2)∫sin²θ/cosθ·cosθdθ
=(1/2)x²·arccos(x)+(1/2)∫sin²θdθ
=(1/2)x²·arccos(x)+(1/2)∫(1-cos2θ)/2dθ
=(1/2)x²·arccos(x)+(1/4)(θ-1/2·sin2θ)+C
=(1/2)x²·arccos(x)+(1/4)arcsin(x)-(x/4)√(1-x²)+C