一道关于导数与圆锥曲线交汇应用的高中数学题
设函数f(x)=(1/3)x^3+(1/2)(m+1)x^2+(m+n+1)x+1,若方程f'(x)=0的两个实数根可以分别作为一个椭圆和一个双曲线的离心率,则
Am-n>=-3Bm-n-3Dm-n