当前位置 :
函数可导与连续的关系
1人问答
问题描述:

函数可导与连续的关系

齐亚峰回答:
  在某点可导,则在这点必然连续.但连续不一定可导,假如这点是两条曲线的交点就不一定可导.同样,如果在某个区间可导,那么在这个区间必然连续.   用例子说说单调性问题.例如对于三次函数图像,通常都两个极值点,一个极大点,一个极小点,在这两个极值点之间曲线是连续的,导函数的符号会从大于零转换到小于零(或从小于零转换到大于零),恰恰在这符号变化点处(拐点),导函数不存在,这就是要求在该区间必须是单调的.   请观察下面图像中的Q点.
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞