(1)A(-1,0),B(1,0),C(0,-1);(2)4;(3)(-2,3),(,),(4,15).
试题分析:(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值;(2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知AP的长度,以及点B到直线的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积;(3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC∠和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解.试题解析:(1)令y=0,得x2-1=0解得x=±1,令x=0,得y=-1∴A(-1,0),B(1,0),C(0,-1);(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=45°.∵AP∥CB,∴∠PAB=45°.过点P作PE⊥x轴于E,则△APE为等腰直角三角形,令OE=A,则PE=A+1,∴P(A,A+1).∵点P在抛物线y=x2-1上,∴A+1=A2-1.解得A1=2,A2=-1(不合题意,舍去).∴PE=3.∴四边形ACBP的面积S=AB•OC+AB•PE=×2×1+×2×3=4;(3)假设存在∵∠PAB=∠BAC=45°,∴PA⊥AC∵MG⊥x轴于点G,∴∠MGA=∠PAC=90°在Rt△AOC中,OA=OC=1,∴AC=在Rt△PAE中,AE=PE=3,∴AP=3设M点的横坐标为m,则M(m,m2-1)①点M在y轴左侧时,则m<-1.(ⅰ)当△AMG∽△PCA时,有.∵AG=-m-1,MG=m2-1.即解得m1=-1(舍去)m2=(舍去).(ⅱ)当△MAG∽△PCA时有,即.解得:m=-1(舍去)m2=-2.∴M(-2,3)(10分).②点M在y轴右侧时,则m>1(ⅰ)当△AMG∽△PCA时有∵AG=m+1,MG=m2-1∴解得m1=-1(舍去)m2=.∴M(,).(ⅱ)当△MAG∽△PCA时有,即.解得:m1=-1(舍去)m2=4,∴M(4,15).∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似M点的坐标为(-2,3),(,),(4,15).考点:二次函数综合题.