当前位置 :
数学分析不等式证明证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n).其中∑是对k从0到n求和.似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k.我不得要领,数学
1人问答
问题描述:

数学分析不等式证明

证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n).

其中∑是对k从0到n求和.似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k.我不得要领,

数学归纳法不妨试试,不过那个字母e有些烦人,e=2.718281828...归纳法倒是很难,电灯剑客说的很正确,我后来这样做了,我先证明了:xln(1+1/x)>1+ln(1-1/(2x)),x≥1。记y=1/x,则0<y≤1,记f(y)=ln(1+y)-y+y^2/2,求导知f严格单增,f(y)>f(0)=0,故有ln(1+1/x)>1/x-1/(2x^2)>0,xln(1+1/x)>1-1/(2x)。又由ln(1-1/(2x))的幂级数展开知(显然x≥1时级数收敛到ln(1-1/(2x))):ln(1-1/(2x))<-1/(2x)-1/8x^2,故1+ln(1-1/(2x))<1-1/(2x)-1/8x^2<1-1/(2x)<xln(1+1/x),故(1+1/x)^x>e(1-1/(2x)),x≥1,从而:(1+1/n)^n>e(1-1/(2x))>(∑1/k!)-e/(2n)证必。证明中我没有用到中值定理...

高春能回答:
  提示一下,左边用Taylor中值定理来估计e^{1/n},右边直接放大到e(1-1/(2n)).
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞