计算从0到π的定积分∫[x/(4+sin²x)]dx
可用公式∫(上限a,下限0)f(x)dx=∫(上限a,下限0)f(a-x)dx
答案为π²/(4√5),
先算出原函数还是计算不了
原函数是1/(2√5)•[arctan(√5/2•tanx)+C
代入x=π后,tan(π)=0,tan(0)=0,那结果岂不是=0?