当前位置 :
如图1,四边形ABGE中,AB=BG=GE=EA,∠BAE=∠B=∠G=∠E=90°,点D在EG上,点C在BG上,且∠DAC=45°,求证CD=DE+CB(请利用在CD上作垂线AF的方式解答,
1人问答
问题描述:

如图1,四边形ABGE中,AB=BG=GE=EA,∠BAE=∠B=∠G=∠E=90°,点D在EG上

,点C在BG上,且∠DAC=45°,求证CD=DE+CB(请利用在CD上作垂线AF的方式解答,

唐玉华回答:
  证明:∵AB=BG=GE=EA,∠B=∠G=∠E=90°   ∴四边形ABGE是正方形   延长GE至H,使EH=BC,连接AH.   ∵AE=AB,CB=EH,∠B=∠AEH=90   ∴△ACB≌△AEH   ∴∠CAB=∠EAH   ∵∠EAC=45   ∴∠CAB+∠DAE=45   ∴∠EAC+∠DAE=∠DAH=45   ∴∠DAH=∠CAD,AD=AD,AE=AC   ∴△ACD≌△AHD   CD=HD=DE+EH=DE+CB   延长线上证明方法相同,此处略.   很高兴为您解答!如果您满意我的回答,
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞