已知锐角三角形ABC中,边A,B,C分别是角,B,C所对的边,若满足(a+b+c)(b+c-a)=3bc求cosB+cosC的取值范围
原式=(b+c)^2-a^2=3bc.带入
(sinb+sinc)^2-sin(b+c)^2=3sinb*sinc
即(sinb)^+(sinc)^2-sinb*sinc
=2[(sinb*cosc)^2+(sinc*cosb)^2+2sinb*sinc*cosb*cosc]
=(sinb*cosc)^2+(sinc*cosb)^2+2sinb*sinc*cosb*cosc
(sinb)^+(sinc)^2-sinb*sinc-(sinb*cosc)^2+(sinc*cosb)^2
=(sinb*sinc)^2+(sinc*sinb)^2
=2(sinb*sinc*cosb*cosc)
(sinb*sinc)^2+(sinc*sinb)^2-2(sinb*sinc*cosb*cosc)=0
sinbsinc*sinb*sinc=sinb*sinc*cosb*cosc参考
答案:设B=α
周长=3+6(sinα+sin(120-α))
(6,9]