当前位置 :
用数学归纳法证明:1+2+2^2+...+2^(3n-1)可被7整除.
1人问答
问题描述:

用数学归纳法证明:1+2+2^2+...+2^(3n-1)可被7整除.

司志刚回答:
  证明,当n=1时,3n-1=2,1+2+2^2+...+2^(3n-1)=1+2+2*2=7,可以被7整除.假设当n=n时可以被7整除,也就是(1+2+2^2+...+2^(3n-1))可以被7整除,当n增加1时,(3n-1)增加了3,新数列为(1+2+2^2+...+2^(3n-1))+2^(3n)+2^(3n+1)+2^(3n+2)=7m+2^(3n)+2^(3n+1)+2^(3n+2)=7m+2^(3n)(1+2+4)=7m+7*2^(3n)所以是7的倍数,证明完毕.
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞