正弦定理:对于任意三角形ABC,都有:a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆半径);余弦定理:CosC=(a^2+b^2-c^2)/2ab;三角形ABC的外接圆半径为R,而且满足2R(sin^2A-sin^2C)=(√2a-b)sinB,给等式两边同时乘以2R,得到:4R^2(sin^2A-sin^2C)=(√2a-b)2RsinB,由正弦定理,即:a^2-c^2=(√2a-b)b变形为:a^2+b^2-c^2=√2ab,由余弦定理,我们得到:CosC=(a^2+b^2-c^2)/2ab=√2/2所以C=45°;三角形的面积S△=1/2*ab*sinC=1/2*2RsinA*2RsinB*sin45°=√2*R^2*sinA*sinB下面我们求sinA*sinB的最大值:sinA*sinB=[cos(A-B)-cos(A+B)]/2=[cos(A-B)+√2/2]/2,在三角形ABC中,0
a/sinA=b/sinB=c/sinC=2R
(证明:作过三角形的一点如A外接圆的直径交圆于点D,连接BD,CD,根据同弦所对的圆周角相等=>角B等于角ADC,又角ADC是直角(直径所对的角是直径),在Rt△ADC中,有b/sin角ADC=b/sinB=2R)
推出sinA=a/2R,sinB=b/2R.sinC=c/2R代入2R(sin^2A-sin^2C)=(a*根号2-b)sinB
化解得a^2-c^2=ab√2-b^2(1)
即(a^2+b^2-c^2)/2ab=√2/2=cosC,推出C=45°
所以S△ABC=absinC/2=ab√2/4
=(2sinAsinB)√2/8=[cos(A-B)-cos(A+B)]√2/8
=[cos(A-B)+1/2]√2/8≤3√2/16
a/sinA=b/sinB=c/sinC=2R=2√2
=>a=2RsinA,b=2RsinB,c=2RsinC
2√2(sin??A-sin??C)=(a-b)sinB
=>4R??(sin??A-sin??C)=2R(a-b)sinB
=>a??-c??=(a-b)b
=>(a??+b??-c??)/2ab=1/2=cosC
=>C=60°
S△ABC=absinC/2=2RsinA*2RsinB*sinC/2
=√3(2sinAsinB)=√3[cos(A-B)-cos(A+B)]
=√3[cos(A-B)+1/2]≤3√3/2