在三角形ABC中,设内角A.B.C的对边分别为a.b.c,向量m=(cosA,sinA),向量n=(√2-sinA,cosA),若|向量m+向量n|=
b=4√2,且c=2√a,求三角形ABC的面积
向量m+向量n|=2
(t-2)[(t+2)t^2+16]=0怎么来的?