(1)n=2时,代入检验,符合.
(2)若n=k时此通项公式成立,即ak=(3/2)*[2^(k-1)]-[1/(k+1)],则n=k+1时,
a(k+1)=2a(k)+[(k+1+2)/((k+1)^2+k+1)]
=3*[2^(k-1)]-2*[1/(k+1)]+[(k+1+2)/((k+1)^2+k+1)]
=(3/2)*(2^k)-1/(k+2)
所以a(k+1)也符合此通项公式.
综合(1)、(2),由数学归纳法知,对一切正整数n,an=(3/2)*[2^(n-1)]-[1/(n+1)]