(2x^2-3x+1)^2=22x^2-33x+1
答案:
x=0或3/2或-3/2或3
假设2x^2-3x+1=y
(2x^2-3x+1)^2=22x^2-33x+1
(2x^2-3x+1)^2=22x^2-33x+11-10
(2x^2-3x+1)^2=11(2x^2-3x+1)-10
y^2=11y-10
y^2-11y+10=0
(y-10)(y-1)=0
y=10或1
所以
2x^2-3x+1=10或1
当
2x^2-3x+1=10
2x^2-3x-9=0
(x-3)(2x+3)=0
x=3或-3/2
当
2x^2-3x+1=1
2x^2-3x=0
x(2x-3)=0
x=0或3/2
所以
x=0或3/2或-3/2或3