正弦定理
证明
步骤1在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点H
CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式.
余弦定理
平面几何证法
在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC2=AD2+DC2b2=(sinB*c)2+(a-cosB*c)2b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2b2=(sinB2+cosB2)*c2-2ac*cosB+a2b2=c2+a2-2ac*cosBcosB=(c2+a2-b2)/2ac