当前位置 :
已知a、b、c、d均为正数,且m<a/b<n,m<c/d<n,证明:m<(a+c)/(b+d)<n
1人问答
问题描述:

已知a、b、c、d均为正数,且m<a/b<n,m<c/d<n,证明:m<(a+c)/(b+d)<n

韩建达回答:
  证明:因为a、b、c、d均为正数,且m<a/b<n,m<c/d<n,所以mb<a<bn,dm<c<dn,从而mb+dm<(a+c)<bn+dn即m<(a+c)/(b+d)<n.
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞