设:f(n)=(1+2+3+…+n)(1+1/2+1/3+…+1/n)-n^2-n+1
f(3)=(1+2+3)(1+1/2+1/3)-9-3+1=6*11/6-9-3+1=0
f(n+1)-f(n)=(1+2+3+…+n+n+1)[1+1/2+1/3+…+1/n+1/(n+1)]-(n+1)^2-n
-(1+2+3+…+n)(1+1/2+1/3+…+1/n)+n^2+n-1
=1+(n+1)(1+1/2+1/3+…+1/n)+(1+2+3+…+n)(n+1)-2n-2
>1+n+1+(n+1)^2-2n-2>0
f(n)单调递增.
f(n)>f(3)≥0
当n=2时,1/2^2=1/4=2)时不等时成立,那么,对于n=k+1,有
1/2^2+a/3^2+……+1/k^2+1/(k+1)^2