当前位置 :
2根棍子能测地球周长是怎么办到的?RT
1人问答
问题描述:

2根棍子能测地球周长是怎么办到的?

RT

刘荫忠回答:
  公元前3世纪,有位古希腊数学家叫埃拉托斯芬.他才智高超,多才多艺,在天文、地理、机械、历史和哲学等领域里,也都有很精湛的造诣,甚至还是一位不错的诗人和出色的运动员.   人们公认埃拉托斯芬是一个罕见的奇才,称赞他在当时所有的知识领域都有重要贡献,但又认为,他在任何一个领域里都不是最杰出的,总是排在第二位,于是送他一个外号'贝塔".意思是第二号.   能得到"贝塔"的外号是很不容易的,因为古代最伟大的天才阿基米德,与埃拉托斯芬就生活在同一个时代!他们两人是亲密的朋友,经常通信交流研究成果,切磋解题方法.大家知道,阿基米德曾解决了"砂粒问题",算出填满宇宙空间至少需要多少粒砂,使人们瞠目结舌.大概是受阿基米德的影响吧,埃拉托斯芬也回答了一个令人望而生畏的难题:地球有多大?   怎样确定地球的大小呢?埃拉托斯芬想出一个巧妙的主意:测算地球的周长.   埃拉托斯芬生活在亚历山大城里,在这座城市正南方的785公里处,另有一座城市叫塞尼.塞尼城中有一个非常有趣的现象,每年夏至那天的中午12点,阳光都能直接照射城中一口枯井的底部也就是说,每逢夏至那天的正午,太阳就正好悬挂在塞尼城的天顶.   亚历山大城与塞尼城几乎处于同一子午线上.同一时刻,亚历山大城却没有这样的景象.太阳稍稍偏离天顶的位置.一个夏至日的正午,埃拉托斯芬在城里竖起一根小木棍,测量天顶方向与太阳光线之间的夹角,测出这个夹角是7.2o,等于360o的1/50.   由于太阳离地球非常遥远,可以近似地把阳光看作是彼此平行的光线.于是,根据有关平行线的定理,埃拉托斯芬得出了∠1等于∠2的结论.   在几何学里,∠2这样的角叫做圆心角.根据圆心角定理,圆心角的度数等于它所对的弧的度数.因为∠2=∠1,它的度数也是360o的1/50,所以,图中表示亚历山大城和赛尼城距离的那段圆弧的长度,应该等于圆周长度的1/50.也就是说.亚历山大城与塞尼城的实际距离,正好等于地球周长的1/50.   于是,根据亚历山大城与塞尼城的实际距离,乘以50,就算出了地球的周长.埃拉托斯芬的计算结果是:地球的周长为39250公里.   这是人类历史上第一次进行这样的测量.   联想到埃拉托斯芬去世1800年后,仍然有人为地球是圆的还是方的而喋喋不休时,埃拉托斯芬高超的计算能力和惊人的胆识,益发受到人们的称颂.
物理推荐
最新更新
优秀物理推荐
热门物理
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞