当前位置 :
高数中的向量分配律是怎么证明的(a+b)·c=a·c+b·c(分配律)
1人问答
问题描述:

高数中的向量分配律是怎么证明的(a+b)·c=a·c+b·c(分配律)

冯德鸿回答:
  用坐标法证.证明:设a=(x1,y1),b=(x2,y2),c=(x3,y3).则a+b=(x1+x2,y1+y2)于是(a+b)•c=(x1+x2)x3+(y1+y2)y3而a•c=x1x3+y1y3,b•c=x2x3+y2y3,于是a•c+b•c=x1x3+y1y3+x2x3+y2y3=(x1+x...
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞