已知二次函数f(x)=ax2+bx+c,a、b、c∈R+,满足f(-1)=0,对于任意的实数
x都有f(x)-x≥0,并且当x∈(0,2)时,有f(x)≤(x+1)2/4,求证:1.f(1)的值2.证明:a>0,c>0
2.当x∈[-1,1]时.函数g(x)=f(x)-mx,(m∈R)是单调的,证明:m≤0或m≥1