1.
a²=b(b+c)又余弦定理:a²=b²+c²-2bccosA
于是:b(b+c)=b²+c²-2bccosA
∴c=(1+2cosA)b
正弦定理:sinC=(1+2cosA)sinB
sin(A+B)=sinB+2cosAsinB
sinAcosB+cosAsinB=sinB+2cosAsinB
sin(A-B)=sinB又A,B∈(0,π)==>A-B=B,A=2B
因为上面步步可逆,所以翻过来一样可以证明,故为充要条件.
2.
sin²α+2sin²β=2cosα
2sin²β=2cosα-sin²α=cos²α+2cosα-1》0,cosα》-1+√2或cosα《-1-√2(舍弃)
所以:cosα的范围是:[-1+√2,1]
2(sin²α+sin²β)=sin²α+2cosα=-cos²α+2cosα+1=-(cosα-1)²+2
cosα的范围是:[-1+√2,1]
当cosα=1,-(cosα-1)²+2最大值2,
当cosα=-1+√2时,-(cosα-1)²+2取最小值(4√2)-4
所以:sin²α+sin²β的最大值为:1,最小值为:(2√2)-2
3.
cos²θ+2msinθ-2m-2