利用立方和公式cos^3A+sin^3A=(cosA+sinA)(cos^2A+cosAsinA+sin^2A)=1
因为(sinA+cosA)^2=1+2cosAsinA
令sinA+cosA=t得到t^2=1+2cosAsinA
所以cosAsinA=[t^2-1]/2
代入(cosA+sinA)(cos^2A+cosAsinA+sin^2A)=1
得到[3t-t^3]/2=1化简得到t^3-3t+2=0
(t^3-1)-(3t+2+1)=(t-1)(t^2+t+1)-3(t-1)=(t-1)(t^2+t+-2)=(t-1)(t-2)(t-1)=0
所以t=1或t=2
但cosA+sinA的范围在负根号2到正根号2
所以cosA+sinA=1