用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.设F
用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.
设F(x)=ax^3+bx^2-(a+b)x,则F(x)在[0,1]上连续,在(0,1)内可导,F(0)=F(1)=0,所以由罗尔中值定理,至少存在一点ξ∈(0,1),使得F'(ξ)=0.F'(x)=3ax^2+2bx-(a+b),所以3aξ^2+2bξ-(a+b)=0,所以ξ是方程方程3ax^2+2bx-(a+b)=0在(0,1)内的一个实根
为什么要把f(x)重新还原成导函数啊?好像定理里没有这一条吧?