当前位置 :
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的长轴长为4,F1,F2分别为其左右焦点,抛物线Y2=-4X的焦点为F1过焦点F1的直线L与椭圆交于P.Q两点,求三角形F2PQ面积的最大值
1人问答
八字精批流年运程八字合婚八字起名
问题描述:

椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的长轴长为4,F1,F2分别为其左右焦点,抛物线Y2=-4X的焦点为F1

过焦点F1的直线L与椭圆交于P.Q两点,求三角形F2PQ面积的最大值

蔡永华回答:
  2a=4,a=2   F1(-1,0),即c=1   b^2=a^2-c^2=3   C:x^2/4+y^2/3=1   当L垂直于x轴时取面积最大值,PQ座标x=-1,y=+-1.5   PQ=2*1.5=3   S(F2PQ)=3*2/2=3
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞
复制重新加载
原创不易,您的支持将成为鼓励我的动力
《椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的长轴长为4,F1,F2分别为其左右焦点,抛物线Y2=-4X的焦点为F1过焦点F1的直线L与椭圆交于P.Q两点,求三角形F2PQ面积的最大值|小学数学问答-字典翻译问答网》
1、付费复制方式
支付宝付费后即可复制当前文章
限时特价:5.99元
原价:20元
打开支付页
2、微信付费复制方式
微信扫码付费后即可复制当前文章
限时特价:5.99元
原价:20元