当前位置 :
【已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1(Ⅰ)求证:数列{a已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1(Ⅰ)求证:数列{an}为等差数列;(Ⅱ)求数列{an}的通项】
6人问答
问题描述:

已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1(Ⅰ)求证:数列{a

已知数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1

(Ⅰ)求证:数列{an}为等差数列;

(Ⅱ)求数列{an}的通项.

乔雷回答:
  s(n)=(n+1)[a(n)+1]/2-1.   s(n+1)=(n+2)[a(n+1)+1]/2-1,   a(n+1)=s(n+1)-s(n)=[(n+2)a(n+1)-(n+1)a(n)]/2,   na(n+1)=(n+1)a(n),   a(n+1)/(n+1)=a(n)/n,   {a(n)/n}为首项为a(1)/1=3,的常数数列.   a(n)/n=3,   a(n)=3n=3+3(n-1),   {a(n)}是首项为3,公差为3的等差数列.
初志方回答:
  错了吧,,S(n+1)-Sn错了
乔雷回答:
  楼主英明。。。a(n+1)=s(n+1)-s(n)=[(n+2)a(n+1)-(n+1)a(n)+1]/2,na(n+1)=(n+1)a(n)+1,a(n+1)/(n+1)=a(n)/n+1/[n(n+1)]=a(n)/n+1/n-1/(n+1),a(n+1)/(n+1)+1/(n+1)=a(n)/n+1/n.{a(n)/n+1/n}为首项为a(1)/1+1=4,的常数数列。a(n)/n+1/n=4,a(n)=4n-1=4(n-1)+3,{a(n)}是首项为3,公差为4的等差数列。
初志方回答:
  现在是了
乔雷回答:
  那,敬请楼主采纳~~多谢!
初志方回答:
  其实在那之前我已写好。。不过给个好评!
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞