当前位置 :
【设函数f(x)在[0,1]连续且单调增加,证明F(X)=(1/X)∫[0,x]f(t)dt在(0,1)内也单调增加】
2人问答
问题描述:

设函数f(x)在[0,1]连续且单调增加,证明F(X)=(1/X)∫[0,x]f(t)dt在(0,1)内也单调增加

富长贵回答:
  F(x)=(1/x)*∫[0,x]f(t)dtF'(x)=(1/x)'*∫[0,x]f(t)dt+(1/x)*{∫[0,x]f(t)dt}'=(-1/x²)*∫[0,x]f(t)dt+(1/x)*f(x)=(-1/x²)*{∫[0,x]f(t)dt-xf(x)}由积分中值定理,在[0,x]上,至少存在一点ξ∈[0,x],使得(x...
任楠回答:
  谢谢您的指点,对我非常有帮助!
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞