第3章一元一次方程全章综合测试
(时间90分钟,满分100分)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式x-1和的值互为相反数.
4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().
A.0B.1C.-2D.-
10.方程│3x│=18的解的情况是().
A.有一个解是6B.有两个解,是±6
C.无解D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足().
A.a≠,b≠3B.a=,b=-3
C.a≠,b=-3D.a=,b≠-3
12.把方程的分母化为整数后的方程是().
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().
A.10分B.15分C.20分D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().
A.增加10%B.减少10%C.不增也不减D.减少1%
15.在梯形面积公式S=(a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=()厘米.
A.1B.5C.3D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().
A.从甲组调12人去乙组B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.
A.3B.4C.5D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()
A.3个B.4个C.5个D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:-9.5.
20.解方程:(x-1)-(3x+2)=-(x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名ABCDEFGH
各站至H站
里程数(米)15001130910622402219720
例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数1~50人51~100人100人以上
票价5元4.5元4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
答案:
一、1.3
2.-3(点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3.(点拨:解方程x-1=-,得x=)
4.x+3x=2x-65.y=-x
6.525(点拨:设标价为x元,则=5%,解得x=525元)
7.18,20,22
8.4[点拨:设需x天完成,则x(+)=1,解得x=4]
二、9.D
10.B(点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
3.2解一元一次方程(一)
—