1.抛物线y²=2px,焦点在x轴为(p/2,0),过其焦点f且斜率为1的直线l为:y=x-p/2,与抛物线y²=2px交点x²-3px+p²/4=0,x1+x2=3p=6,p=2,抛物线的准线方程:y²=4x.
2.y²-2py-p²=0,y1+y2=2p=4,则点m坐标为(6,4),判断双曲线焦点在y轴上,设双曲线为y²/a²-x²/b²=1,16/a²-36/b²=1,渐进线为y=±x/2,a/b=1/2,2a=b,代入16/a²-36/4a²=1,a²=7,b²=28,双曲线的c的标准方程:y²/7-x²/28=1.
1.求椭圆c的标准方程.椭圆c的对称中心为坐标原点o,焦点再x轴上,设椭圆c为:x²/a²+y²/b²=1,c²=a²-b²,(a²-b²)/a²=1/4,1/a²+4/9b²=1,a²=16/9,b²=16/12,椭圆c的标准方程:9x²/16+12y²/16=1.
2.椭圆c的左焦点(-2/3.0),右焦点(2/3.0),向量fa乘以向量fb=0,则fa⊥fb,y1y2/(x1-2/3)(x2-2/3)=-1,y1y2/[x1x2-2(x1+x2)/3+4/9]=-1,设过左焦点的直线为:y=kx+2k/3,与9x²/16+12y²/16=1交点,(9+12k²)x²+16k²x+16k²/3-16=0,x1+x2=-16k²/(9+12k²),x1x2=(16k²/3-16)/(9+12k²),
(9+12k²)y²-12ky+4-16k²=0,y1y2=(4-16k²)/(9+12k²),代入得:[(4-16k²)/(9+12k²)]/[(16k²/3-16)/(9+12k²)+32k²/3(9+12k²)+4/9]=-1,k²=3/2,k=±√6/2,直线l的方程y=±√6(x+2/3)/2.