(1,0为焦点)
设(x1,y1)为y^2=4x上一点,既y1^2=4x1
设其绕(1,0)旋转90度后为(x2,y2)
则有y1/(x1-1)*y2/(x2-1)=-1
y2/(x2-1)=-(x1-1)/y1,设y2/(x2-1)=-(x1-1)/y1=k
y2=k(x2-1)(x1-1)=-y1
且(x2-1)^2+y2^2=(x1-1)^2+y1^2
得(1+k^2)(x2-1)^2=y1^2(1+k^2)
既x2-1=-y1(因为是逆时针
则y2=(x1-1)既y2+1=x1
又y1^2=4x1
故(x2-1)^2=4(y2+1)
所以轨迹就是4(y+1)=(x-1)^2