设函数的定义域为,如果存在正实数,对于任意都有,且恒成立,则称函数为上的“型增函数”。已知函数是定义在上的奇函数,且当时,,若为上的“型增函数”,则实数的取值范围是 .
试题分析:是定义在上的奇函数,且当时,,又为上的”型增函数”,当时,由定义有,即,其几何意义为到点小于到点的距离,由于故可知得,当时,分两类研究,若,则有,即,其几何意义表示到点的距离小于到点的距离,由于,故可得,得;若,则有,即,其几何意义表示到点的距离与到点的距离和大于,当时,显然成立,当时,由于,故有,必有.解得.故答案: