当前位置 :
【证明级数∑1/n^x(1】
1人问答
问题描述:

证明级数∑1/n^x(1

黄建成回答:
  证明要用到一个定理:如果函数列un(x)在[a,b]上连续,且级数∑un(x)在(a,b)上一致收敛,则数项级数∑un(a)和∑un(b)都收敛.这个定理用一致收敛的定义和数项级数收敛的柯西准则很容易证明.现在用反证法证明本题,假设∑1/n^x在(1,+∞)上一致收敛,则根据刚才的定理,∑un(1)=∑1/n收敛,但是调和级数∑1/n是发散的,这矛盾说明∑1/n^x在(1,+∞)上不一致收敛.
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞