把y=1-x代入x²/a²+y²/b²=1
(a²+b²)x²-2a²x+a²-a²b²=0
x1+x2=2a²/(a²+b²)
x1x2=(a²-a²b²)/(a²+b²)
把x=1-y代入x²/a²+y²/b²=1
(a²+b²)y²-2b²y+b²-a²b²=0
y1+y2=2b²/(a²+b²)
y1y2=(b²-a²b²)/(a²+b²)
OA⊥OB
y1y2/x1x2=-1
(b²-a²b²)/(a²-a²b²)=-1
a²+b²=2a²b²
直线x+y-1=0在x、y轴截距为1
∵a>b>0,且OA⊥OB
∴a>1,0<b<1,
椭圆E与圆x²+y²=1的交点,
x=±√[(a²-a²b²)/(a²-b²)]
y=±√[(a²b²-b²)/(a²-b²)]