数学归纳法证明1/n+1+1/n+2+1/n+3+...+1/3n>9/10n>=2
1)当n=2时,左=1/3+1/4+1/5+1/6=57/60>54/60=9/10,成立.
(2)假设n=k时,有1/(k+1)+1/(k+2)+...+1/3k>9/10
那么 1/(k+2)+1/(k+3)+...+1/3(k+1)
=[1/(k+1)+1/(k+2)+...+1/3k]+1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)
>9/10+1/(3k+3)+1/(3k+3)+1/(3k+3)-1/(k+1)
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
第二步中为什么是
>9/10+1/(3k+3)+1/(3k+3)+1/(3k+3)-1/(k+1)
不应该是
>9/10+1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)的么