y=(x+3)(x-2)/(x²-5x+6)
=(x+3)(x-2)/(x-2)(x-3)
得知x=2,x=3为间断点(函数在这些点没有定义)
(间断点分为两类别:第一类-可去间断点,跳跃间断点,
第二类-无穷间断点,震荡间断点)
(1)当x=2时,会发现函数在该点的左极限,右极限存在且相等(等於-5),但函数在该点无定义.(分子,分母同时为0),所以x=2为可去间断点.
(2)当x=3时,会发现函数在该点无定义(分母为0),且左极限,右极限至少有一个为∞,(左极限为-∞,右极限为+∞),所以x=3为无穷间断点.
注意:要判断间断点的类型,要非常了解它们的定义,及它们的差别.
若有什麼不懂,欢迎再次发问...