设A(x1,y1),B(x2,y2),则AB直径的圆过原点表明∠ACB=90°,于是AC⊥BC,用斜率表示即
y2/x2*y1/x1=-1,
即
x1*x2+y1*y2=0
将x=3-2y代入方程得
(3-2y)^2+y^2+(3-2y)-2cy+c=0.
整理得
5y^2-(14+2c)y+12+c=0.
所以y1+y2=14/5+2/5*c,y1*y2=12/5+1/5*c
x1*x2+y1*y2=(3-2y1)(3-2y2)+y1*y2
=9-6(y1+y2)+5y1*y2
=9-6(14/5+2/5*c)+5(12/5+1/5*c)
=21/5-7/5*c
得c=3
发现自己算错好多,改了好多次……